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Yu-Shiba-Rusinov (YSR) states arise as sub-gap excitations of a magnetic impurity in a super-
conducting host. Taking into account the quantum nature of the impurity spin in a single-site
approximation, we study the spectral properties of the YSR excitations of a system of magnetic
impurity in a spin-split superconductor, i.e. a superconductor in proximity to a ferromagnetic
insulator at zero external magnetic fields. The YSR excitations of this system exhibit a robust
spin-polarization that is protected from fluctuations and environmental noise by the exchange field
of the ferromagnetic insulator, which can be as large as a few Tesla. We compare the results of this
quantum approach to the classical approach, which conventionally predicts fully polarized YSR ex-
citations even in the absence of exchange and external magnetic field. Turning on a small magnetic
field, we show the latter splits the YSR excitations in the regime where the impurity is strongly
coupled to the superconductor, whilst the classical approach predicts no such splitting. The studied
system can potentially be realized in a tunnel junction connected to a quantum dot in proximity to
a spin-split superconductor.

I. INTRODUCTION

Magnetic impurities in superconductors often feature
Yu-Shiba-Rusinov (YSR) excitations. These sub-gap
bound states arise due to the exchange coupling between
the impurity and the superconductor [1–3]. Much of the
recent effort devoted to the study of these excitations is
driven by experimental advances in scanning tunneling
spectroscopy (STS), which allow to access the spectral
properties of YSR excitations with atomic-scale resolu-
tion [4–6]. For example, from the spectrum and spatial
dependence of the YSR excitations, we can learn about
non-conventional pairing properties or the symmetry of
the Fermi surface of the host superconductor [7, 8]. In ad-
dition to magnetic impurities on the surface of supercon-
ductors, the YSR excitations have also been investigated
in superconducting devices with molecular junctions [9]
as well as quantum dots with superconducting leads [10–
12].

In many theoretical treatments, including the pioneer-
ing works of Yu, Shiba, and Rusinov, magnetic impurities
are modeled as classical spins (see e.g. [13] for a review).
Thus, the impurity is described as an external scatter-
ing potential for the quasiparticles of the superconduc-
tor. The potential has an opposite sign for opposite spin
orientation along the spin-quantization axis, leading to
the two non-degenerate in-gap YSR excitations with op-
posite energy and full spin polarization. For this reason,
systems with the YSR excitations are often proposed as
ideal platforms for superconducting spintronics and mag-
netic characterization at the microscopic scale [14–16].
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However, this description often overlooks the quantum
nature of the spin degree of freedom of magnetic atoms,
molecules, or quantum dots [12, 17–21]. Indeed, quantum
(and thermal or noise) fluctuations destroy the spin po-
larization of the YSR excitations. Spin-polarization can
be restored by applying external magnetic fields [22, 23].
However, magnetic fields applied to superconducting de-
vices also have unwanted orbital effects, which may in-
duce supercurrents and suppress superconductivity.

In this work, we propose using a ferromagnetic insu-
lator (FMI) adjacent to the superconductor to induce
a finite spin-polarization of the YSR excitations. The
FMI leads to an effective exchange field of strength h
in the superconductor in the absence of external mag-
netic field [24–27]. The exchange field is induced by the
magnetic proximity effect at the FMI/superconductor in-
terface [28, 29], and leads to a spin-splitting equivalent
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Figure 1. Schematic picture of a possible realization of the
studied system. It consists of a superconductor in proximity
to a ferromagnetic insulator coupled to a quantum dot or a
molecule that can be modeled as a spin-S quantum impurity.
The right normal metal is a ferromagnetic tunneling contact
to probe the spin polarization. An external magnetic field B
is applied in different directions.
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to that of a magnetic field as large as tens of Tesla with-
out any orbital effects. To account for quantum fluctua-
tions in the spectrum of a magnetic impurity coupled to
such spin-split superconductor, we extend the single-site
model used in Refs. [20, 30, 31]. This approach pro-
vides an excellent qualitative description of the spectra
obtained experimentally [31]. It also captures the proper-
ties of the ground state and low-lying states of the system
while being computationally cheaper than the numerical
renormalization group (NRG) [23, 32]. We demonstrate
that the exchange field h induced by the FMI suppresses
fluctuations and leads to a finite spin-polarization of the
YSR excitations without introducing any spin-splitting
of the latter. In addition, if a small external magnetic
field is applied, we show that the YSR excitations split
only if the system is in the regime where the impurity
spin is strongly coupled to the superconductor. In con-
trast, as we also show below, the classical description of
the impurity yields no such spin splitting of the YSR ex-
citations, the main effect of the external magnetic field
being a shift of the energy of the YSR peaks in the spec-
tral function.

For the sake of simplicity, we focus our analysis on a
spin- 12 impurity and isotropic exchange coupling between
the superconductor and the magnetic impurity. The
latter may correspond, for example, to a quantum dot
coupled to an FMI/supeconductor system (see Fig. 1),
which can be realized in superconductor/semiconducting
nanowire heterostructures in proximity to a FMI [33].
For other setups relevant to magnetic atoms or molecules
on the surface of superconductors, our results can be
straightforwardly extended to account for larger impu-
rity spins, single-ion anisotropy, as well as anisotropic
exchange [20, 31]. The remaining sections of this article
are organized as follows: In the next section, we intro-
duce the model and describe the many-body spectrum
of the FMI/superconductor- quantum dot system as a
function of the exchange coupling, the exchange field,
and the external magnetic field. In Sec. III, we discuss
the spectral properties of the YSR excitations focusing
on spin-polarization. Finally, we present our conclusions
in Sec. IV. Appendix A contains the details of the classi-
cal solution of the model. In Appendix B, we provide the
details of the analysis of the spin polarization described
in Sec. III.

II. MODEL AND MANY-BODY SPECTRUM

We consider a magnetic impurity in a spin-split su-
perconductor as schematically shown in Fig. 1. The ex-
change field h of the device is achieved by bringing a
conventional (s-wave) superconductor in proximity to a
ferromagnetic insulator (FMI). Assuming that the thick-
ness of the superconductor is smaller than the supercon-
ducting coherence length, it is a good approximation to
consider a homogeneous exchange field h [27]. Thus, the
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Figure 2. Evolution of the many-body spectrum of the single-
site model in Eq. (1) as the exchange field (h), exchange cou-
pling (J), and external magnetic field (B) are switched on
sequentially. Their values are given in units of the strength
of the superconducting pairing potential ∆. The energies of
the even and odd fermion-parity states are shown in blue and
orange color, respectively. The expression for the odd-parity
eigenstate |o〉 is given in Eq. (4). The arrows indicate the sub-
gap transitions corresponding to the YSR excitations with
and without B. In the rightmost panel, the system is in the
strong coupling regime and the YSR excitations are split by
B.

Hamiltonian of the system reads

H = H0 +HJ +HB , (1)

where

H0 =
∑
k,σ

ξkc
†
k,σck,σ + ∆

∑
k

(c†k,↑c
†
−k,↓ + h.c.)

− h
∑
k

(c†k,↑ck,↑ − c
†
k,↓ck,↓) , (2a)

HJ = J
∑
k,σσ′

c†k,σS · sσσ′ck,σ′ , (2b)

HB = B · S. (2c)

Here, H0 describes a superconductor with mean-field
pairing potential of strength ∆ and an exchange field h =
hez along z-axis; HJ is the isotropic exchange interaction
between the host superconductor and the magnetic im-
purity described by the spin operator S with coupling
strength J . Finally, HB accounts for the Zeeman en-
ergy due to an external magnetic fieldB = B(cos θ, sin θ)
where the angle θ (see Fig. 1) measures the tilt between
the magnetic field and the z-axis.

In Eq. (2), the operator c†k,σ(ck,σ) creates (annihi-

lates) an electron with the momentum k, the spin state
σ ∈ {↑, ↓} and the electron dispersion (measured from
the chemical potential) ξk; s being the Pauli matrices
s = (sx, sy, sz). We assume an external magnetic field
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|B| � |h|. In this limit, the effect of the magnetic field
on the superconductor can be neglected, while its cou-
pling to the impurity-spin persists and can be used as an
additional probe into the properties of the YSR excita-
tions, as discussed below. Furthermore, let us point out
that the range of Zeeman couplings analyzed in this work
is different from the regime previously studied in Ref. [23]
using the NRG, which applies to a different physical sit-
uation.

To solve the model in Eq. (1) we use two different ap-
proaches: On the one hand, a single-site model in which
the superconducting host is effectively modeled by a sin-
gle site but its coupling to the impurity spin is described
exactly by treating S as spin- 12 operator. On the other
hand, the classical description in which the superconduc-
tor is treated as an extended system but the exchange
coupling is simplified by treating the impurity spin S as
a classical vector.

In the single-site model, we simplify the Hamiltonian
H describing the system (2) to the following model:

H0 = ∆(c†↑c
†
↓ + h.c.)− h(c†↑c↑ − c

†
↓c↓) , (3a)

HJ = J
∑
σσ′

c†σS · sσσ′cσ′ , (3b)

HB = B · S . (3c)

This model is an extension of the single-site model
introduced in Ref. [20, 30], which takes into ac-
count the exchange field h due to proximity to the
FMI as well as the external magnetic field B [34].
Within the single-site model and for a spin- 12 im-
purity, the Hilbert space of the model in Eq. (1)
is the tensor product of the four-dimensional Hilbert
space of the single superconductor site and the two-
dimensional Hilbert space of the impurity-spin: H ={

(|0〉, | ↑↓〉 ≡ |2〉, |↑〉, |↓〉)⊗ (| ± 1
2 〉
)
}, where we have

defined |σ = {↑, ↓}〉 = c†σ|0〉 and |0〉 is the zero-
particle state. The Hamiltonian conserves the fermion
parity, which for the single-site model takes the form
P =

∏
σ(−1)nσ , where nσ = c†σcσ. Thus, all eigen-

states can be labeled by their fermion parity and there-
fore the Hilbert space splits into the direct sum of the
even (P = +1) and odd (P = −1) parity sectors, i.e.
H = He⊕Ho with He = {(|BCS〉, |BCS〉)⊗ (|± 1

2 〉)} and
Ho = {(| ↑ 〉, | ↓ 〉)⊗(|±1/2〉)}. Here we have introduced
the notation |BCS〉 = 1

2 (|2〉 + |0〉), |BCS〉 = 1
2 (|2〉 − |0〉)

for the eigenstates of H0 with eigenvalues −∆ and ∆,
respectively. The single quasi-particle excitations of the
superconductor are denoted by |↑〉 and |↓〉 and have zero
eigenvalue of H0 at h = 0.

Figure 2 shows the evolution of the many-body spec-
trum of the system as a function of the exchange field h,
the coupling J , and the external magnetic field B = Bez
as obtained from the exact diagonalization of the Hamil-
tonian (1) in the single-site approximation. The leftmost
panel shows the spectrum of the Hamiltonian in Eq. (3a)
with h = 0.

We next discuss the effect of different couplings as

we add them sequentially. An exchange field h lifts
the degeneracy of the quasi-particle states giving rise to
two two-fold odd-parity degenerate states | ↑〉| ± 1

2 〉 and

| ↓〉| ± 1
2 〉 with energies ±h. As we show below, this

splitting in the presence of the magnetic exchange with
the impurity leads to the non-zero polarization of the
YSR excitations. The exchange interaction HJ entangles
the impurity doublet | ± 1

2 〉 with the odd-parity states of
the superconductor, resulting in a further splitting of the
many-body states.

However, in the weak coupling regime, i.e. for small
values of J compared to ∆, the ground state of the system
is in the even-parity sector, and it is the tensor prod-
uct of the impurity spin-doublet and the BCS ground-
state |BCS〉| ± 1/2〉. In this regime, the system cannot
gain much energy by coupling to the magnetic impurity,
and therefore, the electrons in the superconductor remain
paired, leaving the impurity spin unscreened. Thus, the
ground state is doubly degenerate, and the total spin
projection of the ground state on ez is SzT = ±1/2. We
shall refer to this ground state as a doublet and assume
that the system is in a mixed state with equal probabili-
ties of the two states of the doublet (this results in zero
net polarization of the YSR at h = 0, as discussed in
the following section). Applying a finite magnetic field
B selects one of the states of the doublet (or a linear
combination thereof) as the absolute ground state and
induces a finite spin-polarization, polarization which per-
sists even at h = 0. However, for weak magnetic fields,
we expect the latter not to be robust to thermal fluctu-
ations and environmental noise. This robustness can be
achieved with the help of the exchange field h induced in
the superconductor by proximity to an FMI.

At sufficiently large J (strong coupling regime), the
ground state becomes the odd-parity state with SzT = 0
resulting from the entanglement of the impurity doublet
and one superconductor (spin-split) quasi-particle exci-
tation, which is given by

|o〉 =
1√

1 + γ20

(
|↓〉|+ 1

2 〉 − γ0|↑〉| −
1
2 〉
)
, (4)

where γ0 = (h+
√
h2 + J2)/J . Although the full spin ro-

tation symmetry is broken by the exchange field induced
by the FMI, below we shall often refer to this state as
the singlet.

The state |o〉 becomes the ground state at a criti-
cal value of the exchange coupling Jc = Jc(h,∆), at
which the system undergoes a quantum phase transition
(QPT). Across the QPT, the fermion parity P of the
ground state changes. Since the tunneling of a single
electron (or hole) into the system changes the fermion
parity, only excitations between states of opposite par-
ity are accessible using tunneling probes. In particular,
the YSR excitations are the lowest lying excitations and
correspond to transitions between the ground states in
different parity sectors (they are indicated by arrows in
Fig. 2). In the weak coupling regime (J < Jc), the YSR
excitation is a transition from the doublet ground state to
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the singlet state |o〉 given in Eq. (4). On the other hand,
in the strong coupling regime (J > Jc), the YSR excita-
tion corresponds to a transition from |o〉 to the doublet
ground states in the even-parity sector.

When an external magnetic field B is applied, it lifts
the two-fold degeneracy of the ground state in the even-
parity sector. This results in the splitting of the YSR
excitations only in the strong coupling regime. In the
weak coupling regime, such splitting does not take place
because, as explained above, the magnetic field selects
one of the states of the even-parity doublet subspace as
the absolute ground state. As we will discuss in Sec. III,
one can regard the splitting of the YSR excitations as a
consequence of the quantum nature of the impurity spin:
Since the tunneling electron (hole) can bring back the
superconductor from the singlet state |o〉 to the |BCS〉
state, the impurity spin is left unscreened and free to pre-
cess in the external magnetic field. Note that a classical
spin would simply align in the direction of the external
magnetic field (see discussion below and Appendix A).

Although it provides a fully quantum mechanical de-
scription of the coupling between the superconductor
and the magnetic impurity, the single-site model de-
scribed above does not capture many of the effects of the
wide continuum scattering states of the superconductor.
Therefore, as far as the spectral properties of the YSR ex-
citations are concerned, the results are rather qualitative
and the model is unable to provide information about,
e.g., the spatial extent of the excitations.

Alternatively, the Hamiltonian in Eq. (2) can be sim-
plified by modeling the magnetic impurity as a classical
spin. Note that, in the case of a quantum impurity, the
exchange coupling HJ contains a spin-flip term with non-
trivial consequences, especially for impurities with low
spin S. However, in the classical approach, the impurity
spin is treated as a classical vector that aligns with the ex-
ternal magnetic field (when present) and therefore it can
be parametrized as S = S(cos θ, sin θ), where θ is the an-
gle subtended by the magnetic field B and the exchange
field h ∝ ez. This results in a localized spin-dependent
scattering potential proportional to JS(cos θsz +sin θsx)
being added to the Bogoliubov-de-Gennes Hamiltonian
describing the superconductor. We refer the reader to
Appendix A, where we provide further details of the clas-
sical approach and describe how the sub-gap spectrum is
obtained. In the following section, we will describe the
effect of the exchange and applied magnetic fields on the
spectral properties of the YSR excitations and compare
the results obtained using the two approaches mentioned
above.

III. SPECTRAL PROPERTIES OF THE
SUB-GAP EXCITATIONS

In order to illustrate the consequences of treating the
impurity spin quantum mechanically, we compare the
spectral properties of the YSR excitations in the single-

site and classical approaches. Besides the dependence
of the excitation energy on the various system parame-
ters, we are interested in their spin-polarization proper-
ties, which can be accessed experimentally using a spin-
polarized tunneling probe [35]. As explained below, the
spin polarization of the YSR excitations is defined as the
difference of the spectral weight of the spin-up and spin-
down YSR peaks of the spectral function measured using
a tunneling probe (cf. Fig. 1). We normalize the polar-
ization to the maximum of the sum of spectral weights
for the two spin orientations of each YSR excitation.

Let us briefly recall how the polarization can be mea-
sured using a tunneling probe. In the tunneling regime,
the full Hamiltonian describing the tunneling of electrons
(or holes) from a tunneling probe contains three terms:

Htot = H +Ht +Hts , (5)

where H is the system Hamiltonian, which we describe
using the single-site model from Eq. (3), the Hamiltonian
for the (spin-polarized) tunneling probe Ht, which is ex-
pressed in terms of the creation (annihilation) operators
of the electrons in the probe, i.e., d†σ(dσ), and the tun-
neling Hamiltonian Hts. For a quantum impurity in the
Kondo regime, Hts reads (see e.g. [36])

Hts = T0
∑
σ

c†σdσ + T1
∑
σ,σ′

c†σS · σσσ′dσ′ , (6)

where T0 is the direct tunneling amplitude into the super-
conductor and T1 the tunneling amplitude through the
magnetic impurity, respectively. Notice that the system

operators appearing in T0 (e.g. c†↑, for σ =↑) and T1 (e.g.

c†↓S
+ + c†↑S

z, for σ =↑) when acting upon a given state

invert its fermion parity and change SzT by ± 1
2 . Thus,

for zero external magnetic field B, the contributions to
the normal current in the weak tunneling regime [37] are
of the order |T0|2, and |T1|2. Furthermore, when the
magnetic field B is not aligned with the exchange field
h ∝ ez, S

z
T is not a good quantum number and there

is also an interference term proportional |T ∗0 T1| ∼ B.
However, for the small magnetic fields considered here,
we shall neglect this correction. In addition, since the
single-site model only provides a qualitative description
of the spectral amplitudes, below we focus on the |T0|2
contribution to the tunneling current only. Indeed, since
the involved operators obey the same selection rules, the
|T1|2 contribution results from transitions between the
same many-body states and simply yields an additional
(positive) contribution to the current. Focusing on the
|T0|2 contribution and using the standard tunneling for-
malism [37], the spin-polarized tunneling current is de-
termined by the spin-resolved spectral function Aσ(ω),
which is obtained from the imaginary part of the local
Green’s function, Aσ(ω) = −Im[GR

σ (ω)]/π, where GR
σ (ω)

is the Fourier transform of

GR
σ (t) = −iθ(t)〈

{
cσ(t), c†σ(0)

}
〉. (7)
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Figure 3. Spin polarization of the YSR excitations as a function of the energy E and the exchange coupling J in the single-site
model. In the absence of the magnetic field, the system shows no splitting of the YSR excitations (a), while adding the magnetic
field gives rise to the splitting of the YSR excitations in the strong coupling regime (c,d). The dashed line indicates the QPT.
All the energies are given in units of ∆. The values of the parameters used to generate the plots are B = 0.1, and h = 0.3.

Hence, for ω > 0, the spectral function takes the
form [38]:

Aσ(ω) =
∑
n

|〈ψn|c†σ|ψ0〉|2δ(ω − εn + ε0) . (8)

Below, we focus on the YSR excitations which correspond
to transitions from the ground state of the system, |ψ0〉
to the lowest-lying excited state |ψ1〉 (or states for B 6= 0
and J > Jc, see below). The spectral weight of the YSR
excitations is thus given by:

Zσ = |〈ψ1|c†σ|ψ0〉|2 . (9)

Hence, we define a (normalized) polarization spectral
function for the YSR excitations as follows:

P (ω) =

(
Z↑ − Z↓
Z↑ + Z↓

)
δ(ω − ε1 + ε0) , (10)

where the maximum in the normalization corresponds to
the sum of the spectral weights with spin-up and spin-
down YSR excitations. For B 6= 0, the above expressions
must be generalized to include all the relevant low ly-
ing states involved in the YSR excitation (see Fig. 2).
Further details of the calculations in the single-site ap-
proach are relegated to the Appendix B. For the classical
approach, the polarization of the YSR excitations is ob-
tained by extending the scattering solution of Yu, Shiba,
and Rusinov [1–3] to take into account the exchange field
h, with the details of these calculations being provided
in Appendix A. Below, we will compare the above polar-
ization spectral function to the results of the normalized
polarization obtained from the classical approach.

However, before fully discussing the results of those
calculations, let us clarify a subtle issue regarding the
calculation of the polarization of the YSR excitations in
the single-site approach. Let us recall that, in the weak
coupling regime at zero magnetic field, the ground state
of the system is the doublet |e±〉 = |BCS〉|± 1

2 〉 . An unbi-
ased preparation of the system will result in the ground
state being either |e+〉 or |e−〉 with equal probability,

which is described by the following mixed state:

ρe =
1

2
(|e+〉〈e+|+ |e−〉〈e−|) . (11)

In this expression, the pre-factor pi={±} = 1
2 refers to the

classical probability for the system to be found in one of
the states of the doublet. Therefore, the expression for
the spectral function needs to be modified in order to
take into account that the ground state is a mixed state,
which results in the following expression:

Aσ(ω) =
∑
i={±}

pi
∑
n

|〈ψn|c†σ|ei〉|2δ(ω − εn + ε0) . (12)

Note that, in the absence of the exchange and external
magnetic fields (i.e. h = B = 0), a tunneling electron
(hole) will induce a transition to a state that has a non-
zero overlap with the lowest energy odd-parity state,

|o〉 =
1√
2

(|↓〉|+ 1
2 〉 − |↑〉| −

1
2 〉) . (13)

This yields equal spectral weight of the YSR excitation
for the two spin orientations, i.e. Z↑ = Z↓ = 1

16 , hence re-
sulting in zero spin-polarization. Zero polarization is also
obtained when the calculation is carried out in the strong
coupling regime, in which the ground state is a pure state
corresponding to the odd-parity singlet |o〉 from Eq. (13).
On the other hand, in the classical approach in the ab-
sence of h and B, the classical vector describing the spin
of the magnetic impurity is conventionally chosen along
a certain direction (the spin quantization axis). Thus,
the solutions of the BdG equations, including the YSR
in-gap levels, have the spin projection on the spin quan-
tization axis as a good quantum number. This has led
to the perception that the YSR excitations are indeed
spin polarized in both weak and strong coupling regimes.
Below, when considering the classical approach, we shall
follow the same convention.

Next, we discuss the polarization function P (ω) of the
YSR excitations as a function of the exchange coupling
and the applied magnetic field in the single-site model
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and compare the results to the classical approach. As
anticipated above, we will show that the presence of ei-
ther the exchange or magnetic field is required for the
YSR excitations to have non-zero polarization. In the
absence of a magnetic field, the polarization of the states
is protected by the exchange field h, which can be of
the order of a few Tesla, thus, making the polarization
robust against thermal fluctuations and environmental
noise. Figure 3 shows the polarization spectral function
P (ω) of the YSR excitations as a function of the exchange
coupling J for the finite value of the exchange field: In
the absence of an external magnetic field, the single-site
model predicts the existence of a pair of spin-polarized
YSR excitations both in the weak and in the strong cou-
pling limit (see Fig. 3(a)). The polarization spectrum in
the classical model shows a somewhat similar behaviour:
two spin-polarized YSR excitations crossing at the criti-
cal value of the exchange coupling (see Fig. 4(a)). How-
ever, closer examination reveals a crucial difference be-
tween the two approaches: While in the classical limit,
the YSR excitations are fully polarized for any value of
J (cf. the Fig. 4), in the quantum approach, the polar-
ization of the YSR excitations at ω > 0 depends on the
exchange field h and coupling J as follows:

Z↑ − Z↓
Z↑ + Z↓

∝ γ20 − 1

γ20 + 1
=

h√
h2 + J2

. (14)

Thus, at a finite value of h, the YSR excitations are po-
larized even for B = 0. Applying an external magnetic
field alters the polarization of the YSR excitations. In the
presence of the magnetic field, one of the ground states
in the weak coupling regime (or a linear combination of
them) is selected and the system is no longer described by
a mixed state, which further enhances the polarization.

Regarding the effects of the external magnetic field,
we first consider the case when B||h in Fig. 3(b). In
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Figure 4. Polarization of the YSR excitations from the clas-
sical approach as a function of the dimensionless coupling
parameter α ' JS for two different impurity-spin S orienta-
tions: parallel (a) and perpendicular (b) to the exchange field
h. In order to highlight the polarization of the YSR excita-
tions here we plot A↑(ω)−A↓(ω) normalized by the maximum
value of the total density of states, that eliminates contribu-
tion from the continuum of states. The dashed line indicates
the phase transition. The energies are in units of the super-
conducting pairing potential ∆. In the two panels, we have
set h = 0.3.

the weak coupling regime, the system exhibits a pair of
fully-polarized YSR excitations and a similar result is
obtained using the classical approach. However, in the
strong coupling regime applying the magnetic field splits
the YSR excitations into two pairs of the sub-gap exci-
tations: the main YSR state and its ‘satellite’ with lower
polarization (see Fig. 3(b) for J > Jc). For B||h the po-
larization of the satellite state behaves as P (ω) ∝ −γ2,

where γ =
(
B + 2h+

√
(B + 2h)2 + 4J2

)
/2J , and it

has the opposite sign compared to the main YSR state
spin-orientation. For the details of the polarization cal-
culations see Appendix B.

Changing the orientation of the external magnetic field
allows to control the polarization of the pair of sub-gap
excitations as shown in Fig. 3(c): By applying the mag-
netic field perpendicularly to the direction of the ex-
change field reverses the spin polarization of the satellite
peaks, such that two states have the same polarization
orientation. ForB ⊥ h the polarization of both the main
YSR peaks and their satellites decreases with increasing
exchange coupling J .

To summarize, an external magnetic field can be used
as a knob for tuning the spin-polarization of the YSR
excitations. Figure 5 shows the polarization of the YSR
excitations as a function of the angle subtended by the
applied magnetic and exchange fields θ ∈ (0, π). In the
single-site approach, the behaviour of polarization de-
pends on the strength of the exchange coupling: in the
weak coupling regime, the spin polarization of the YSR
excitations switches with θ, while in the strong coupling
regime, due to the splitting of the YSR excitations in
the magnetic field, the response is qualitatively differ-
ent: the switching happens between the main YSR state
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and its satellite. Additionally, the switching of polar-
ization occurs at different values of θ for the YSR state
and its satellite. Thus, there is a range of θ around π/2
for which there is a pair states with the same finite spin
polarization. On the other hand, as mentioned above,
in the classical case, there is no qualitative difference in
the polarization behaviour between the strong and weak
coupling regimes.

IV. CONCLUSIONS

We have studied a system consisting of a ferromagnetic
insulator/superconductor structure coupled to a quan-
tum dot in the Kondo regime. We demonstrate that
the spin-splitting induced in the superconductor via the
magnetic proximity effect leads to spin polarization of
the YSR excitations even in the absence of an external
magnetic field.

To capture the quantum nature of the quantum dot
spin in a qualitative fashion, we employed a single-site
model describing a quantum impurity coupled to a spin-
split single-site superconductor. This model, despite its
simplicity, correctly captures the many-body nature of
the system’s ground state, in particular, the QPT occur-
ring as a function of the exchange coupling, accompanied
by the change in the fermion parity and the total spin of
the ground state. Both the weak and the strong coupling
phases are characterized by the low-energy spin-polarized
YSR excitations.

We find that the single-site model predicts the split-
ting of the YSR excitations in the strong coupling regime,
while the classical impurity limit does not describe this
splitting. Changing the orientation of the magnetic field
allows controlling the polarization of the YSR excita-
tions, namely rotation of the magnetic field allows to
switch the polarization of the excitations.

For applications in spintronics and transport in quan-
tum devices, the main advantage of using an FMI is that
the polarization of the YSR excitations occurs without
the need of applying a large external magnetic field which
would inevitably affect superconductivity. Our results
can be straightforwardly extended to other setups, as
for example molecules on the surface of superconductors
with larger spin number, magnetic anisotropy, as well as
anisotropic exchange coupling [20, 31].
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APPENDICES

Appendix A: Classical Approach

Following Yu, Shiba and Rusinov [1–3] original works,
the problem of a classical impurity on a superconduc-
tor can be analytically solved by accounting for the ex-
change field in the bare superconductor Green’s func-
tion (GF). To this end, notice that the Bogolyubov-de-
Gennes (BdG) Hamiltonian describing a spin-split su-
perconductor written in the Nambu basis, i.e. Ψk =

(ck↑ ck↓ c
†
−k↓ − c

†
−k↑)

T, takes the form:

H =
∑
k

Ψ†kH
BdG
k Ψk ,

HBdG
k = εkτ3 + ∆τ1 + hσ3τ0 ,

(A1)

where τi=1,2,3 and σi=1,2,3 are the Pauli matrices cor-
responding to the particle-hole and the spin degrees of
freedom, respectively. Hence, the unperturbed GF of a
spin-split superconductor reads

Ĝ−10 (ω,k) = iωσ0τ0 −HBdG
k ,

Ĝ0(ω,k) =
(h− ω)τ0 − ξkτ3 −∆τ1

∆2 + ξk − (h− ω)2
.

(A2)

Performing summation over the momenta, we obtain the
local GF

Ĝ0(ω) = −πν (h− ω)τ0 −∆τ1√
∆2 − (ω − h)2

, (A3)

where ν is the electron density of states at the Fermi level.
The exchange coupling in the limit of classical impurity
is given by a scattering potential V̂ = J

2S ·σ , where J is
an exchange coupling between the impurity-spin S and
the spin-density of a superconductor. Note that in the
classical limit S is a vector.

We compute the T -matrix, whose poles are the energies
of the the sub-gap bound states. The T -matrix can be
defined using the following equation for the perturbed
local GF matrix:

Ĝ(ω) = Ĝ0(ω) + Ĝ0(ω)T̂ (ω)Ĝ0(ω) . (A4)

Upon comparing this equation with the Dyson equation,

we arrive at T̂ (ω) = V̂
[
1− Ĝ0(ω)V̂

]−1
. Hence, for an

impurity aligned with the external magnetic field, we ob-
tain:f

Ĝ(ω) = −πν
D

(
a ∆
∆ a

)
, (A5)
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with D = 2α(h− ω) + (α2 − 1)
√

∆2 − (h− ω)2 and a =

h − ω − α
√

∆2 − (h− ω)2, where we have introduced
the dimensionless parameter α = πνJS/2. The local
retarded GFGR(ω) is obtained by replacing ω → ω+iδ in
the above expression, where δ → 0+. The spin-resolved
spectral function is obtained from normal components of
the GF matrix using

Acl.
σ={↑,↓}(ω) = − 1

π
Im[GRσσ(ω)] . (A6)

For h > 0 Acl.
↑ (ω) has the YSR peak at ω↑ = h−∆ (1−α2)

(1+α2) ,

while Acl.
↓ (ω) has a peak at ω↓ = −h + ∆ (1−α2)

(1+α2) . Notice

that when the external magnetic and exchange fields are
aligned this approach yields two fully spin-polarized YSR
excitations. Thus, the exchange field merely introduces
a shift of the the YSR peak energy. A closed analytical
expression of the energy of the YSR peaks can also be ob-
tained for B perpendicular to the exchange field h, but
not in the general case. However, by obtaining the spin
polarization numerically we observe that the main dif-
ference between the aligned and non-aligned cases is the
change in the spin polarization of the YSR excitations,
which changes from being fully polarized to partially po-
larized as the angle θ between the magnetic and exchange
field increases.

Appendix B: Spin polarization of the YSR
excitations in the single-site model

In this appendix, we calculate spin polarization of the
YSR excitations in the single-site approximation. As-
suming non-zero exchange field we obtain the polariza-
tion of the YSR excitations analytically for the cases of
B = 0 and B||h. The results are shown in Fig. 3(a) and
Fig. 3(b).

When h 6= 0 and B = 0 the polarization P (ω) is com-
puted using the expression given in Eq. (10) of the main
text. The low-energy spectrum for this choice of pa-
rameters is shown in Fig. 6(a). In the weak coupling
regime (J < Jc) the ground-state at ε0 = −∆ is two-
fold degenerate and is described by the density matrix
ρe in Eq. (11). The first excited state with the energy

ε1 = − (h+
√
h2+J2)
J is given by

|o〉 =
1√

1 + γ20
(| ↓, 1/2〉 − γ0| ↑,−1/2〉) , (B1)

where γ0 = h+
√
h2+J2

J . The amplitudes of the spectral
function are

Z↑ = |〈o|c†↑|ρe〉|
2 =

γ20
8(1 + γ20)

,

Z↓ = |〈o|c†↓|ρe〉|
2 =

1

8(1 + γ20)
.

(B2)
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Figure 6. Schematic representation of the low-energy spec-
trum of the single-site model as a function of exchange cou-
pling J for the case of zero (a) and non-zero (b) magnetic field
B. Arrows indicate possible transitions in the weak coupling
(J < Jc) and in the strong coupling (J < Jc) regimes.

In this case, there is a single spin-polarized YSR excita-
tion at ω = ε1 − ε0 and its polarization is given by

P (ω) =

(
γ20 − 1

1 + γ20

)
δ(ω − ε1 + ε0) , (B3)

with the amplitude decreasing as a function of the ex-

change coupling as
γ2
0−1

1+γ2
0
∝ h√

h2+J2
for a fixed value of

the exchange field.
When h 6= 0 andB||h low-energy states involved in the

YSR excitations are shown in Fig. 6(b). Let us discuss
the weak and strong coupling regimes separately. For J <
Jc the magnetic field selects (with probability p− = 1)
one of the doublet parity-even states |e−〉 as the absolute
ground state. The first excited parity-odd state |o〉 is as

in Eq. (B1) but with γ =

(
B+2h+

√
(B+2h)2+4J2

)
2J . Hence,

the spectral weights for spin-excitations are the following

Z↑ = |〈o|c†↑|e−〉|
2 =

γ2

2(1 + γ2)
,

Z↓ = |〈o|c†↓|e−〉|
2 = 0 .

(B4)

Therefore, in the weak coupling regime, there is a single
YSR peak with constant polarization intensity P (ω) ∝
(Z↑−Z↓)/(Z↑+Z↓) = 1. The strong coupling regime re-
quires more care. For J > Jc the ground state is given by
the odd-parity singlet |o〉 and there are two even-parity
states |e±〉 the electron can tunnel to. The polarization
in this case has two contributions

P (ω) =

∑
i={±}(Z

i
↑ − Zi↓)δ(ω − εi + ε0)

max[Z+
↑ + Z+

↓ , Z
−
↑ + Z−↓ ]

, (B5)

where εi={±} = −∆± B
2 . The spectral weights are

Z−↑ = |〈e−|c†↑|o〉|
2 = 0 ,

Z−↓ = |〈e−|c†↓|o〉|
2 =

γ2

2(1 + γ2)
,

Z+
↑ = |〈e+|c†↑|o〉|

2 =
1

2(1 + γ2)
,

Z+
↓ = |〈e+|c†↓|o〉|

2 = 0 .

(B6)
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The polarization is given by the sum P (ω) = P+(ω) +
P−(ω) with

P+(ω) =
Z+
↑

Z+
↑
δ(ω − ε+ + ε0) ,

P−(ω) = −
Z−↓

Z+
↑
δ(ω − ε− + ε0) ,

(B7)

where we normalize each term by Z+
↑ , because Z+

↑ > Z−↓

for J > Jc. Two components P±(ω) correspond to the
main YSR excitation and its satellite, respectively. These
two states show different behaviour as a function of the
exchange coupling J : the polarization intensity of the
satellite state P− ∝ −γ2, with γ = B+2h√

(B+2h)2+4J2
in-

creases as a function of J , while the polarization of the
main YSR excitation P+(ω) stays constant as a function
of J and has an opposite spin-orientation.
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